
Introduction to HPC@UoP

Vincent Drach
 School of Computing, Electronics and Mathematics

vincent.drach@plymouth.ac.uk

Linux & HPC environment

• Quick tour of the Linux operating system (OS)

• Access foseres and configure your working environment

• Submit a job on 1 computing node

2

Today’s goals

Tux is the official mascot of the Linux kernel.

• Introduction :
★ High performance computing
★ Operating system: Linux

• Linux Tutorial (using Ubuntu):
★ Linux Filesystem
★ Basic Unix tools
★ Scripting

• Specificities of an HPC environment
★ Remote connection
★ Modules
★ Queuing system
★ Virtual environment

3

Outline

Introduction

4

5

• The aim of High Performance Computing is to use a large number of computing resources to
solve computation problems efficiently.

• Computing resources:
✦ Multi-core CPU
✦ GPUs
✦ FPGA

• A cluster combines the computing nodes through a network that allows to communicate data.

• Depending on your scientific problem
✦ You use a software that do not require to use multiple nodes
✦ You use a software that orchestrate the communication between the nodes for you
✦ Some adjustment to design a parallelisation strategy is required.
✦ Some significant development are required

• High Performance Computing environment requires
✦ To analyse the computing problem that you are trying to solve
✦ To accept that part of the research is to learn how to use the hardware
✦ To do some experimentation

High Performance Computing

6

• A computer program is a collection of instructions[1] that performs a specific task when
executed by a computer. A computer requires programs to function and typically executes
the program's instructions in a central processing unit.

• the program in its human-readable form is called source code

• Two (main) categories:

★ Source code can be converted by a compiler to derive machine code—a form
consisting of instructions that the computer can directly execute usually referred to as
executables

★ Alternatively, a source code may be executed with the aid of an interpreter:, a program
that executes source code from a programming language line-by-line.

• An algorithm is a well-defined sequence of operation and is not to be confused with its
implementation

The algorithm is the cooking recipe - the program is the cake !

Program: definition

https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Algorithm

7

• Operating system (OS) = Software that sits between applications and
hardware
★ Has privileged access to hardware
★ Provides services and interfaces to applications

• User applications call OS routines for access and services
• OS contains computer programs, device drivers, and the kernel
• The kernel is the central part of an operating system. It manages the

operations of the computer and the hardware - most notably memory and
CPU time

What is an Operating System?

https://simple.wikipedia.org/wiki/Computer_program
https://simple.wikipedia.org/wiki/Device_driver
https://simple.wikipedia.org/wiki/Kernel_(computer_science)
https://simple.wikipedia.org/wiki/Operating_system
https://simple.wikipedia.org/wiki/Computer_hardware
https://simple.wikipedia.org/wiki/CPU

8

• Provides a layer of abstraction for hardware resources
★ Allows user programs to deal with higher-level, simpler and more portable concepts
★ Hide underlying details, and provide cleaner, easier-to-use, more elegant concepts

and interfaces
★ Also provides standardised interfaces despite diversity of implementation

underneath

• Manages the ressources
★ Allow multiple applications to share resources without hurting one another
★ Allow multiple users to share resources without hurting one another
★ OS dynamically manages which applications get how many resources

• Protects programs and their data from one another, as well as users from one another

★ what if I could modify your data, either on disk or while your program was running?

What is the role of the OS?

9

• Disk hardware and operations are very complex
★ Multiple heads, cylinders, sectors, segments

★ Have to wait for physical movement before writing or reading data to/from
disk

★ Data stored discontinuously for performance
★ Sizes and speeds are different on different computers

• OS provides simple read() and write() calls as the application programmer’s
interface
★ Manages the complexity transparently, in conjunction with the disk

controller hardware

Example of “abstraction”: hard disk

10

• main OS in the 80’s:
★ Microsoft’s DOS
★ Apple MAC
★ UNIX

• Both DOS, MAC and UNIX were proprietary, i.e., the source code of their kernel is protected
(No modification is possible without paying high license fees)

•

Before Linux

• 1984: GNU project

★ Development of Started by Richard Stallman who believes that
software should be free from restrictions against copying or
modification in order to make better and efficient computer programs

★ GNU is a recursive acronym for "GNU's Not Unix!”,[chosen because
GNU's design is Unix-like

★ Stallman built the first free GNU C Compiler in 1991.
•

https://en.wikipedia.org/wiki/Recursive_acronym
https://en.wikipedia.org/wiki/Unix-like

11

• In Sept 1991, Linus Torvalds, a second year student of Computer Science at
the University of Helsinki, developed the preliminary kernel of Linux, known as
Linux version 0.0.1

• Licensed under GNU General Public License,thus ensuring that the source
codes will be free for all to copy, study and to change.

Beginning of Linux

https://en.wikipedia.org/wiki/GNU_General_Public_License

12

• Linux was originally developed for personal computers based on the Intel x86 architecture,
but has since been ported to more platforms than any other operating system

• Because of the dominance of the Linux kernel-based Android OS on smartphones, Linux has
the largest installed base of all general-purpose operating systems.[

• All the world's 500 most powerful supercomputers use a linux based operating system.

• The development of Linux is one of the most prominent examples of free and open-source
software collaboration. The underlying source code may be used, modified and distributed—
commercially or non-commercially— by anyone under the terms of its respective licenses

• The most popular and mainstream Linux distributions are Arch Linux, CentOS, Debian,
Fedora, Gentoo Linux, Linux Mint, Mageia, openSUSE and Ubuntu, together with commercial
distributions such as Red Hat Enterprise Linux and SUSE Linux Enterprise Server

• A Linux distribution (often abbreviated as distro) is an operating system made from a
software collection, which is based upon the Linux kernel and, often, a package management
system.

Linux nowadays

https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Intel_x86
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/Computer_hardware_platforms
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
https://en.wikipedia.org/wiki/Installed_base
https://en.wikipedia.org/wiki/General-purpose_operating_system
https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Arch_Linux
https://en.wikipedia.org/wiki/CentOS
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Fedora_(operating_system)
https://en.wikipedia.org/wiki/Gentoo_Linux
https://en.wikipedia.org/wiki/Linux_Mint
https://en.wikipedia.org/wiki/Mageia
https://en.wikipedia.org/wiki/OpenSUSE
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Red_Hat_Enterprise_Linux
https://en.wikipedia.org/wiki/SUSE_Linux_Enterprise_Server
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Package_management_system
https://en.wikipedia.org/wiki/Package_management_system

Linux tutorial

13

• Login: HPC-user
• Password: Training22

• This is a shared account (do not store any password)

• If you want to back up things, remember to upload them to your one drive.

• Start the Ubuntu virtual machine (VM)

• Then click on Power on this virtual machine
• Then click on “I copied It”

14

Login in SMB306

Click
here

15

Open a terminal

Click
here

Terminal
prompt

• The shell: a command line interpreter to interact with the kernel. It can be started
using the “terminal” application. There are many of them the default is called “bash”
for “Bourne-Again shell”.

• Some commands:

★ pwd: Print working directory will tell you what directory you are in.

★ cd path– Change Directory

★ ls – Lists files & directories

★ w – display who is logged in and what they are doing

★ rm filename – Remove the file named filename

★ mkdir dirname - make directories

16

First step with the terminal

• Everything in Linux is either a file or a directory

• The Filesystem Hierarchy Standard (FSH) is the way that these files and directories are
structured:

★ / is the root directory

★ /bin: Essential user command executables to perform operations: copy, show directory,
…

★ /boot

★ /dev: devices

★ /etc: Configuration files for all programs

★ /lib – Essential shared libraries and kernel modules

★ …

17

Filesystem

18

Linux filesystem hierarchy

Source: https://linuxfoundation.org/blog/classic-sysadmin-the-linux-filesystem-explained/
attachment/standard-unix-filesystem-hierarchy/

https://linuxfoundation.org/blog/classic-sysadmin-the-linux-filesystem-explained/attachment/standard-unix-filesystem-hierarchy/
https://linuxfoundation.org/blog/classic-sysadmin-the-linux-filesystem-explained/attachment/standard-unix-filesystem-hierarchy/

• Example type “ls -l”: (-l is an option which stands for long listing format)

• You can see files in black, directory in blue, the date of last modification
among other things.

19

Example

• Current location: pwd

• Examples:

• Note that ls return what is inside the directory where you are

• ls /home return what is in /home:

• A path is a means to get to a particular file or directory on the system.

20

Example

• Path can be absolute or relative:

• Shortcuts:

★ ~ (tilde) - shortcut for your home directory: ls ~

★ . (dot) - This is a reference to your current directory. Try: ls ./Documents

★ .. (dotdot)- This is a reference to the parent directory. Try: ls ..

21

More on paths

 relative path
 Absolute path

• Playing a bit with ls:

22

Example

• Linux is an “extensionless” file system (you can name an executable file.txt if you
want… But it would be mean)

• Luckily there is a command to determining what type of file a particular file is:

★ file-- obtain information about what type of file a file or directory is.

• The manual:

★ man <command> - Look up the manual page for a particular command. (e.g try
man ls) [press q to quit the manual, space or up and down arrows to scroll down]

★ Type /-l in the ls manual to look for “-l”

★ then n to jump to the next iteration

★ Look at the ls option : -a,-l,-r,-t for instance

23

A few remarks

• To create a directory: try in your home folder: mkdir testdir

• To remove it : rmdir testdir (note that testdir must be empty for rmdir to work)

• To create an empty file called “testfile” you can type touch testfile

• To copy “testfile" in Documents type cp testfile ./Documents

• To copy “testfile” to another place and give it the name “new” type :
cp testfile new

• To move “testfile” to a directory type mv testfile ./Documents

• To move “new” to a new file called “new2” type mv new new2

• You can then remove it by typing rm new2

24

Creating directories & files

• Typing path can be tedious…

• When you start typing a path (anywhere on the command line, you're not just
limited to certain commands) you may hit the Tab key on your keyboard at any
time which will invoke an auto complete action. If nothing happens then that
means there are several possibilities. If you hit Tab again it will show you those
possibilities.

• E.g

25

Tab completion

I typed twice tab

26

Creating directories & files

• Most basic commands :

★ cat - reads files sequentially, writing them to standard output

★ more - to view (but not modify) the contents of a text file on screen [q to quit, space to scroll down, b to scroll back]

• Try to display the content of :

★ The file hostname in /etc

★ The file cp in /bin

★ The file syslog in /var/log

• Editors :

★ nedit, gedit : simple to use [linux]

★ nano: text editor using a command line interface [linux]

★ Emacs or xemacs: text editor (*) [Linux, Windows, macOS]

★ Vi,Vim(*) [Linux, Windows, macOS]

★ Atom, Visual Studio Code [Linux, Windows, macOS]

27

Displaying the contents of a file

(*) very efficient but less user friendly?

https://en.wikipedia.org/wiki/Standard_output

• Use the commands cd and ls to explore what directories are on your system
and what's in them. Make sure you use a variety of relative and absolute
paths. Some interesting places to look at are:

★ /etc - Stores config files for the system.

★ /var/log - Stores log files for various system programs.

★ /bin - The location of several commonly used programs (e.g ls, cd are
there if you look carefully !!)

28

Exercise

• In Linux, every file and directory belongs to a user and a group. Files and directories have a
set of permissions controlling who can read, write, or execute them

• To see the files in the current directory along with their permissions, use the command: ls -l

• The first position indicates directory or file.
The next positions are in groups of 3 corresponding to user, group, other.

• Give a file read and write permissions for group members: chmod g+rw file.txt Remove
execution permissions for other (non-group) users: chmod o-x file.txt

• Give read permissions for all users (user, group, other): chmod a+r file.txt

• Give execution permissions for the user (owner) and group :chmod ug+x file.txt

• To change ownership: chown user1:group1 file.txt

• Files with execute permission are usually programs. These can be “executed” by typing the
name of the file including the path. S

29

File permissions

• du: to see the size of a file (du -h - for “human readable format”)

• diff: to compare two files

• history: displays the list of commands previously typed by the user

• tar, gzip: to compress files

• wc: word, line and character count

• which: locate a program file in the user's path

• grep: file pattern searcher

• tail/head: to display the head/last part of a file

• top, ps , kill: to list the running processes

• date: return the date/time on the system

• sed, awk: stream editor/text processing.

30

Other useful commands

More e.g on: https://linux.die.net

https://linux.die.net

• There are lots of “tricks”
to be efficient.

• A wildcard in Linux is a
symbol or a set of
symbols that stands in for
other characters.

• Examples :

★ ? Matches a
single character

★ * matches any
character or set
of characters,
including no
character

31

Wildcards

• Usually command return their output in the terminal is
called the standard output.

• If there is an error in the command execution it typically
return through another stream called the standard error.

• From a practical point of view, it is sometimes useful to
redirect the standard output and/or the standard error
into a file that is stored and can be looked at later.

• In short :

★ > redirects output to a file, overwriting the file.

★ >>redirects output to a file appending the
redirected output at the end.

★ >& (or 2>&1) for redirecting standard
output and standard to a file

32

Standard output/Standard error

• The pipe command | : allows to send the output of one command to another

33

Combining commands

• A bash variable can contain a number, a character, a string of characters.

• No need to declare the variable. The assignment creates the variable.

• To display a variable use the echo command:, eg:

• Or

• In most cases : $var and ${var} are the same (The braces are only needed to resolve ambiguity
in expressions)

• To define a variable that contains the output of a command : var=$(date)

34

Variables in bash

• Environment variables are a set of variable that allows to customise the
behaviour of the OS.

• For instance when you type ’ls’, the system look for the command ls in the
$PATH variable.

• Type: ’echo $HOME’ or ’echo $PATH’.

• Most programs and libraries (e.g python, R, MPI
implementations) have specific environment variables that
control their behaviour. This is often a source of issues
(e.g software Y cannot find library Z while I just spent 2
days to install it…)

35

Environment variables

• Eg:

• To instruct a shell to run your script in a certain shell, add #!/bin/bash on the
first line of the script.

• All line starting with # are comments : they are ignored by the shell interpreter

36

Scripts

• For loops:

• If … Else

37

Slightly more sophisticated examples

• Find commands that give you the following information

★ How many cores are available

★ How much space is left on the hard disk

★ How much RAM has the computer

★ Which version of ubuntu are you running

★ How much space take your home directory

• Write a script that creates a file called
backup_yourusername_hour:minutes_day_month_year.tar.gz which contains all files
in your home directory

• Where are the password of each user stored ?

38

Exercises

HPC environment

39

• Computing node: two 2.1 GHz, 16-core
Intel Xeon E5-2683v4 (Broadwell) series
processors.

• 48 nodes= 1536 cores

• Memory: 128 GB per node

• Network: Intel OPA fabric [100 GB/s]

• Storage: 0.5 PB - Lustre parallel file
system designed to give high read/write
bandwidth for parallel I/O operations.

foseres (late 2016)

Remote access

41

42

Remote access from Windows
• Start MobaXterm

• The folder ./MyDocuments corresponds to the folder Documents in
Windows.

•

• Secure Shell (SSH): cryptographic network protocol for operating network
services securely over an unsecured network.

• Syntax:

 ssh username@foseres.fost.plymouth.ac.uk

• You will be asked to change your password:
 #length=10 #Digits=4 #Lower case=2 #Upper case=1 #Special character=1

• To come back to your computer just logout of the main server.

43

Connection to foseres

• Command to copy from/to a remote host: scp (secure copy)

• Syntax:

scp Source Destination

• Examples:

scp SourceFile user@foseres.fost.plymouth.ac.uk:./

scp SourceFile user@foseres.fost.plymouth.ac.uk:./directory/TargetFile .

To copy a directory to your home directory:

scp -r dir user@foseres.fost.plymouth.ac.uk:./

To copy from the remote host to your local machine in the present directory:

scp user@foseres.fost.plymouth.ac.uk:./directory/File .

• There are other tools to copy files over ssh. A useful one is rsync.

• Exercise: Copy a file from your Windows machine to foseres

44

Copy files over ssh

• We provide and maintain a flexible computing environment.

• Each user must fine tune the system to its need

• The system admin team provides a number of pre-configured compilers/
software/libraries, that can be loaded using a specific command.

45

An HPC machine is flexible tool

5

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

r-rcppeigen

r

r-rcpp

r-matrix

r-lattice

r-caret

r-foreach

r-nlme

r-ggplot2

r-plyr

r-reshape2

r-car

r-modelmetrics

bzip2

diffutils

r-cli

r-assertthat

r-crayon

r-mass

r-plotrix

r-mvtnorm

r-codetools

r-iterators

r-labeling

libxdmcp

pkgconf

util-macros

xproto

tar

glib

libffi

libiconv

gettext

python

perl

pcre

zlib

ncurses

jdk
tcl

tk

icu4c
libjpeg-turbo

libtiff

pango

freetype

readline

cairo

curl

r-mgcv

r-testthat r-praise

r-r6

r-magrittr

r-digest

r-pbkrtest

r-lme4

libxcb

xcb-proto

libpthread-stubs

libxau

r-viridislite

r-sandwich
r-zoo

r-tibble

r-gtable

r-lazyeval r-scales

r-survival

r-pkgconfig

r-rlang

r-pillar

r-nloptr
r-minqa

nlopt

r-adabag

r-mlbench

r-rpart

cmake

openssl

r-fansi

gmp

automake

m4

autoconf

libtool

r-multcomp

r-th-data

py-numpy

openblas

py-setuptools

xz

libxml2

r-glmnet

r-xgboost

r-stringr

r-stringi

r-data-table

sqlite

gdbm

expat

harfbuzz

xextproto

r-modeltools

swig

r-class

r-igraph

r-irlba

libsigsegv

xtrans

libx11 inputproto

kbproto

r-e1071

flex

help2man
bison

gperf

r-kernlab

r-mda

r-matrixmodels

pixman

libpng

nasm

sed

r-colorspace

r-sparsem

fontconfig

font-util
r-quantreg

r-nnet

r-randomforest

r-pls

gobject-introspection

r-utf8

r-kknn

r-strucchange

r-rminer

r-party

r-cubist

r-coin

r-munsell

r-rcolorbrewer

r-dichromat

To accomplish the same tasks manually, the user would need to read hdf5ȇV�GRFXPHQWDWLRQ��OHDUQ�
DERXW�LWV�GHSHQGHQFLHV��ȴQG�WKHLU websites, and download source code for all of them. The user would
WKHQ�PDQXDOO\�FRQȴJXUH��EXLOG��DQG�LQVWDOO�DOO�RI�WKHVH�GHSHQGHQFLHV�DORQJ�ZLWK�WKH�hdf5 library. Each
SDFNDJH�PD\�XVH�D�GL΍HUHQW�EXLOG�V\VWHP��DQG�HDFK�EXLOG�V\VWHP�LV�OLNHO\�WR�UHTXLUH�LWV�RZQ�SDFNDJH�
VSHFLȴF�SDUDPHWHUV�DQG�RSWLRQV�

:RUVH��SDFNDJHV�PD\�UHTXLUH�VSHFLȴF�YHUVLRQV of their dependencies, or they may require dependencies to
XVH�EXLOG�WLPH�RSWLRQV�WR�HQDEOH�VSHFLȴF�IHDWXUHV��ΖI�D�XVHU�LQVWDOOV�WKH�ZURQJ�YHUVLRQ��WKH\�ZLOO�GLVFRYHU�DIWHU�
WKH�IDFW�WKDW�WKH�SDFNDJHȇV�GHSHQGHQWV�DUH�LQFRPSDWLEOH�ZLWK�LW��DQG�WKH\�ZLOO�KDYH�WR�UHEXLOG��/LNHZLVH��LI�WKH�
SDFNDJH�LV�FRQȴJXUHG�LQ�D�ZD\�WKDW�FRQȵLFWV�ZLWK�GHSHQGHQWVȇ�UHTXLUHPHQWV��LW�ZLOO�QHHG�WR�EH�UHEXLOW��(YHQ�
LI�WKH�EXLOG�SURFHVV�LV�H[HFXWHG�SHUIHFWO\��+3&�XVHUV�H[SHFW�WR�EH�DEOH�WR�XVH�SDFNDJHV�ZLWK�PDQ\�GL΍HUHQW�
compilers and MPI (message passing interface) implementations, so the whole process must be repeated
for each unique compiler/MPI combination. Moreover, when developers build packages with many options
E\�KDQG��WKH\�RIWHQ�IRUJHW�H[DFWO\�KRZ�GL΍HUHQW�SDFNDJHV�ZHUH�FRQȴJXUHG��:LWKRXW�GHWDLOHG�UHFRUG�NHHSLQJ��
LW�FDQ�EH�H[WUHPHO\�GLɝFXOW�WR�GLDJQRVH�LVVXHV�ZLWK�WKH�VRIWZDUH��RU�WR�WU\�QHZ�FRQȴJXUDWLRQV�V\VWHPDWLFDOO\�
(e.g., when tuning for performance).

%XLOGLQJ�DOO�FRQȴJXUDWLRQV�RI�HYHQ�D�VPDOO�SDFNDJH�OLNH�hdf5—with relatively few dependencies—can take a very
long time. Larger packages like rminer (Figure 2) can have over 150 dependencies, and it is not reasonable to
install a package like this without the on-demand automation that Spack provides via simple commands.

� � � � � � �����)LJXUH����UPLQHU�SDFNDJH��ZLWK�����GHSHQGHQFLHV�

Source: llnl (spack)

https://ipo.llnl.gov/sites/default/files/2020-01/spack-rd100-2019_final190924.pdf

Modules

46

• To list all currently available module type:

module avail

• If you partially know the name of the module your are looking for type

module spider gsl

In that case you should see : gsl/2.4 gsl/2.6 gsl/2.7

If you type “module spider gsl/2.7” you find that it requires “ intel/18.0.1”, “intel/18.0.1.163” or intel/19.0.5.281

If you type module spider gsl/2.6 you find that it requires “ gnu8/8.3.0”

• To load a module type

module load ModuleName

The command will configure the shell for an application by modifying the environment variables

• To find help on a given module

module help ModuleName

47

The module command

• If you want to start from a fresh environment type:

module purge

• Many user will need a compiler, I currently advise one of the following
module load gnu8/8.3.0 #-> this is the gnu8 compiler
module load compiler/2021.2.0 #-> this is the intel_oneAPI compiler.

• If you need MPI support, use:
module load openmpi3/3.1.4 # -> if you have loaded the gnu8 compiler
Module load mpi/2021.2.0 # ->if you have load the intel_oneAPI
compiler

• Exercise load your favourite module.

48

The module command

Job scheduler

49

• An HPC machine have many users. There is always a specific software in charge of scheduling job on the “computing
nodes”. In our case the software is called Slurm (an open source, fault-tolerant, and highly scalable cluster management
and job scheduling system for large and small Linux clusters)

• Slurm is used on many of the world’s top 500 supercomputers.

• As a cluster workload manager, Slurm has three key functions.
1. It allocates exclusive and/or non-exclusive access to resources (compute nodes) to users for some duration of time so

they can perform work.
2. It provides a framework for starting, executing, and monitoring work (normally a parallel job) on the set of allocated nodes.
3. It arbitrates contention for resources by managing a queue of pending work.

• Good material at https://hpc.llnl.gov/training/tutorials#training materials. See also https://en.wikipedia.org/wiki/
Slurm_Workload_Manager

• The most important command are:

sbatch : to submit a script (more on that later)
squeue: to look at the queue (who is running, who is waiting to run…)
sinfo: to find out how many job are available

• Exercise: find how many node are idling, allocated, and down (now)

• There are two types of queues : The test queue (2 nodes) and the normal queue (the remaining 46 nodes)

50

The job scheduler

More on https://slurm.schedmd.com/quickstart.html

https://hpc.llnl.gov/training/tutorials#training%20materials
https://en.wikipedia.org/wiki/Slurm_Workload_Manager
https://en.wikipedia.org/wiki/Slurm_Workload_Manager
https://slurm.schedmd.com/quickstart.html

51

Slurm consists of a slurmd daemon running on each compute node and a central slurmctld
daemon running on a management node (with optional fail-over twin).
Important user commands include:

SLURM

command description

sacct report job accounting information about active or completed jobs

salloc allocate resources for a job in real time

sbatch submit a job script for later execution (the script typically contains one or more srun
commands to launch parallel tasks)

scancel cancel a pending or running job

sinfo reports the state of partitions and nodes managed by Slurm (it has a variety of filtering,
sorting, and formatting options)

squeue
reports the state of jobs (it has a variety of filtering, sorting, and formatting options), by
default, reports the running jobs in priority order followed by the pending jobs in priority
order

srun used to submit a job for execution in real time

52

SLURM
• Jobs typically specify what resources are needed, such as type of machine, number of

machines, job duration, amount of memory required, account to charge, etc.

• The jobs are submitted to the execution queue with the commands sbatch <script file>.
The queueing system prints a number (the job id) almost immediately and returns control to
the linux prompt. At this point the job is in the submission queue.

• Once the job is submitted, it will sit in a pending state until the resources have been
allocated to the job. The progress of the job can be monitored using the squeue
command.

53

Job script to reserve 1 entire node
#!/bin/bash

#SBATCH -J test # Job name
#SBATCH --partition normal # Job queue - It could also be set to test
#SBATCH -o job.%j.out # Name of stdout output file (%j expands to jobId)
#SBATCH -N 1 # Number of nodes
#SBATCH -n 1 # Number of MPI tasks
#SBATCH -t 00:03:00 # Run time (hh:mm:ss) - 3 minutes

setting up (example)
module load gnu8
module load R/3.6.1

preprocessing
…
print out some info for the logs

echo “Current directory $(pwd)”
echo “Starting: $(date)”

ls -l

actual computational intensive step
Launch serial executable:

Rscript hello.R # or R CMD BATCH hello.R

post processing / cleaning up

echo “Job complete: $(date)”

Note: the script hello.R is
available in /tmp/hello.R

Copy it to the folder which
contains the batch script.

Note: this script is available
in /tmp/Rjob_example

Exercise: Adapt the script
to run your own hello world
program in the language of

your choice.

54

SLURM

List all current jobs for a user  squeue -u <username> 

List all running jobs for a user  squeue -u <username> -t RUNNING

List all pending jobs for a user   
squeue -u <username> -t PENDING

List all current jobs in the general partition for a user  
squeue -u <username> -p general

List detailed information for a job (useful for
troubleshooting)

 
scontrol show jobid -dd <jobid>

squeue is the main command for monitoring the state of systems, groups of jobs or
individual jobs. scontrol also provides some features for monitoring jobs. The
command squeue prints the list of current jobs. The list looks something like this:

vdrach@MATH2607:~$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 62 normal test vdrach PD 0:00 5 (Resources)
 63 normal test vdrach PD 0:00 6 (Priority)
 64 normal test vdrach PD 0:00 7 (Priority)
 65 normal test vdrach PD 0:00 8 (Priority)
 60 normal test vdrach R 0:03 3 comp[4-6]
 61 normal test vdrach R 0:01 4 comp[1-3,7]

55

To cancel one job  
To cancel all the jobs for a user 
To cancel all the pending jobs for a user 
To cancel one or more jobs by name  
To pause a particular job  
To resume a particular job  
To requeue (cancel and rerun) a particular job

scancel <jobid> 
scancel -u <username> 
scancel -t PENDING -u <username>  
scancel –name myJobName  
scontrol hold <jobid> 
scontrol resume <jobid> 
scontrol requeue <jobid>

scancel and scontrol are the main commands for
controlling the jobs.

SLURM

• The more resources your request, the longer you will usually wait.

• The wall time is limited to 3 days. If you need more let us know.

• Use the test queue (#-p test) to test your scripts if they can be run on 1 or 2
nodes.

• You can find information about job by typing:

scontrol show job JobID

• You can also request an interactive job to actually login on the computing
node for some time and do whatever you want:

srun -N1 -n1 -p normal -t 00:03:00 --pty bash -i

56

Comments/Good practices

Virtual environments

57

• You can also install libraries and softwares in your $HOME directory

• A virtual environment is a convenient way to package your own software
suite.

• In which case is it useful:

1. Your favourite R/python library is not installed

2. You have one program that has been developed for a specific python/
R library and another program written for a different version of the
same library.

• There are different to create virtual environments. Here we focus on the
open-source conda package manager (originally developed by Anaconda
Inc, it is now a separate package released under the BSD license).

Virtual environments: generalities

• Your application require tensorflow 2.6.0 a free and open-source for machine
learning and artificial intelligence, developed by the Google Brain team
together with python 3.9.

module load conda

conda create -n py39_tf260_mkl

conda activate py39_tf260_mkl

conda search tensorflow

conda install tensorflow=2.6.0
Or if you want to specify a particular “build string”

conda install tensorflow=2.6.0=mkl_py39haac40d1_0

To deactivate
conda deactivate

First example

• Now assuming your code is named my_tf2_code.py

• Add conda activate py39_tf260_mkl to your batch script before executing
your python code.

• To list all the available environments:

conda env list

• To delete an environment:

conda env remove -n env_name

Using a virtual environment

• Sometimes a package is not available in the default repository of conda (the one
maintained by the Anaconda Inc. team)

• conda-forge is an alternative channel. It is a community effort.

• A good place to start if you want to install a software/library is to google:

• Conda install name

• Sometimes it will find the package you are looking for in the Conda-forge channel
, in that case:

conda install -c conda-forge packagename

• Always compare the different version available before you make your choice.

• Conda can also be used for R, Julia, …

Comments:

module load conda

conda create -n R

conda activate R

#conda install r-base # the default channel install R 3.6.1
#conda install -c r r-base # R 3.6.1 as well

conda install -c conda-forge r-base # R 4.1.3 s

• Now start R and install seamlessly the library ‘’ggplot2’’.
> install.packages(‘ggplot2’) # to install ggplot2 locally.
…
…
…
* DONE (ggplot2)

The downloaded source packages are in
 ‘/tmp/Rtmp5rZrsH/downloaded_packages’

Updating HTML index of packages in '.Library'
Making 'packages.html' ... done
>

Example with R

• Goal: process 100 images with a program that smooth them

• Copy the folder /tmp/data and the python program /tmp/smoothing.py

• Create your virtual environment to use the program. The program use the library
pillow. The syntax is the following:

python smoothing.py filename smoothing_parameter

where filename is the relative path to a jpg image and smoothing_parameter a
number

• Write a slurm script that run the python program on all the images for a
smoothing parameter of your choice (e.g 4.6), and make sure the smoothed
images are stored in ./run_smoothing_4.6

• Ideally your script should be such that the smoothing parameter is stored in a
variable and set once and for all at the beginning of the script.

Exercise

